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Current Landscape of Architectures 

–  GPU (NVIDIA) 
•  Sub-architectures : 

–  Fermi, Kepler, Maxwell 
•  Multiple Memory Types: 

–  Global, shared, 
constant,  texture 

•  Memory Amount: 
–  Up to 12 GB 

•  1000s of threads 
–  Grids, blocks, and 

warps  

–  CPU/MIC 
•  Multiple ISAs: 

–  Vector Unit Widths:  
»  2,4,8 / 16 

•  Single Memory Type 
–  Shared/private caches  

•  Larger Memory Size (CPU) 
•  Up to 20/60 threads 

–  No explicit organization 

*Slide courtesy of Matthew Larsen 
 University of Oregon, CDUX research group 
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The	Problem	

•  Forces developers to either: 
– Pick a target architecture 
– Add additional implementations of the same 

algorithm: 

A B C D E F Algorithm 

Architecture 

*Slide courtesy of Matthew Larsen 
 University of Oregon, CDUX research group 
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Data-Parallel	Primi0ves	Libraries	

A B C D E F Algorithm 

Backend 

Data Parallel  
Framework 

§  Backend	–	Implement	fast	parallel	primi;ve	operators	for	each	
new	architecture	

§  Frontend	–	Re-think	current	algorithms	in	terms	of	the	
primi;ves	

*Slide courtesy of Matthew Larsen 
 University of Oregon, CDUX research group 
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Data	Parallel	Primi0ves	(DPP)	

§ What	are	they?	
—  Provide	a	level	of	abstrac;on	based	on	Blelloch’s	parallel	primi;ve	

operators	
—  Provides	node	level	parallelism	

§  Big	challenge	
—  “re-thinking”	algorithms	to	use	DPP	
— Not	“por;ng”	algorithms	to	DPP	

§  Benefits	
—  Portable	performance	
—  Future	proof	implementa;ons	

§ What	is	a	DPP	
—  If	it	can	be	completed	in	O(logN)	where	N	is	the	array	size	than	it	can	be	a	

DPP	

5 
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§ Map	
—  Parallel	for	each	loop	

§  Gather	/	Sca^er	
—  Index	set	array	opera;ons	

§  Scan	
—  Index	crea;on	scheme	

§  Reduce	
—  Coun;ng	/	Narrowing	results	

Data	Parallel	Opera0ons	

Input 

Output 

Input 

Output 

Input 

Output 

Input 

Output 
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§  Previous	work	done	in	research	group	at	UO	
—  Ray	Tracing	

•  Promising	results	
•  Using	VTK-m,	EAVL,	etc…	

§  Applying	this	technique	to	Monte	Carlo	Transport	
— Many	possible	avenues	to	consider	

•  Thrust		
–  supports	data	parallel	opera;ons	

•  RAJA	style	
–  Supports	simplifying	key	ideas	with	a	template/MACRO	defini;on	

Portable	Performance	–	Abstrac0on	Layer	
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§  Models	par;cle	transport	in	a	1D	binary	stochas;c	medium	

§  Par;cles	are	created	and	then	tracked	through	a	series	of	events	

§  Tallies	of	mul;ple	types	are	incremented	
—  Single	Value:	Reflec;on,	Transmission	
— Mul;	Value	(per	material):		Absorp;on,	Sca^er	
— Many	Value	(per	zone):	Zonal	Flux	

§  Legacy	approach	(history-based)	did	not	lend	itself	to	many-core	

§  Recent	work	takes	a	new	approach	(event-based)	that	is	suitable	for	
many-core	systems		
(Inves;ga;on	of	Portable	Event-Based	Monte	Carlo	Transport	Using	the	NVIDIA	
Thrust	Library.	in	press.)	

Monte	Carlo	Transport	–	ALPS_MC	
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§  Determine	a	batch	size	
— How	many	par;cles	fit	in	GPU	memory	

§  For	a	given	batch	
— Generate	all	par;cles	in	batch	
— While	any	par;cles	lem	to	compute	

•  For	each	event	X	
–  Get	par;cles	whose	next	event	is	X	
–  Do	event	X	and	compute	their	next	event	

•  Delete	killed	par;cles	

§  3	events	tracked	
—  Collision	
— Material	interface	crossing	
—  Zonal	boundary	crossing	

§  Excluded	zonal	flux	tally	as	future	work	to	study	its	effect	

Event	based	algorithm	-	overview	
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§  Par;cle	class	contains	many	variables		
—  (	3	ints,	1	Long,	6	doubles	)	
—  Real	case	scenarios	contain	even	larger	classes	

§  Not	all	variables	used	in	each	kernel	
—  Reduce	size	of	memory	reads	and	writes	

§  Coalesced	memory	access	with	SOA	

§  Reduced	memory	usage	in	kernel	

AOS	and	SOA	Par0cle	Data	Structure	
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§  Reorganizing	par;cles	is	costly	
— More	costly	then	all	compute	kernels	combined	

§  Only	call	remove	func;on	when	it	makes	an	impacqul	change	to	
array	size	

§  If	number	to	kill	>=	par;cles_remaining.size()	/	2;	
—  Decreases	amount	of	;me	spent	removing	par;cles	
—  Increase	amount	of	;me	needed	to	establish	compute	kernels	

New	Par0cle	Removal	Scheme	
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§  Explicitly	managed	GPU	memory	(cudaMalloc,	etc.	)	

§ Modified	CUDA	version	first		
— Made	new	Thrust,	RAJA	methods	from	op;mized	CUDA	method	

§  Changed	par;cle	data	structure	to	allow	SOA	or	AOS	

§  Kernels	read/write	strategy	changed	to	ensure	-	read,	compute,	
write	pa^ern	upheld	

§  New	par;cle	removal	scheme	

Details	of	Implementa0on	
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§  Studies	in	CUDA	to	understand	performance	

Results	–	10	Million	Par0cle	Study	

(runtime in 
seconds) 

SOA AOS SOA 
(kill/2) 

AOS 
(kill/2) 

SOA 
(sort) 

Collision 0.77 0.89 0.93 1.03 0.92 
Zone 
Boundary 

0.62 0.79 0.75 0.93 0.74 

Material 
Interface 

0.70 1.11 0.92 1.33 0.91 

Compute 
Total 

2.09 2.80 2.59 3.28 2.57 

Remove / 
Sort 

3.95 2.31 0.36 0.42 1.08 

Total Time 6.04 5.11 2.95 3.70 3.65 
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§  Using	one	GPU	device	(	½	K80	)	
—  Results	From	Paper:	

	

— Newest	Results:	

Results	–	100	Million	Par0cle	Study	

(runtime in seconds) AOS 
Serial 508.74 
Thrust 234.30 
CUDA 48.39 

(runtime in 
seconds) 

AOS % 
slowdown 

SOA % 
slowdown 

CUDA 38.68 - 31.43 - 
Thrust 57.77 33% 33.84 8% 
RAJA Like 42.10 8% 31.92 2% 
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§  Spending	;me	to	make	the	SOA	changes	and	directly	managing	
CUDA	memory	paid	off	in	performance	for	all	versions	

§  Star;ng	with	CUDA,	backing	out	an	abstrac;on	layer	was	simple	

§  Ini;al	pass	abstrac;on	layer	a^empt	suffered	significant	
performance	degrada;on	
—  Lessons	learned	now	can	pay	off	down	the	line	in	future	a^empts	at	

star;ng	with	an	abstrac;on	layer	

§  DPP	portable	performance	approach	promising	for	event	based	
Monte	Carlo	transport	

Conclusion	
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§  Using	1	GPU	device	(	½	K80	)	

§  Using	4	GPU	devices	(	2	K80s	)	

Results	–	80	Million	Par0cles	Study	

(runtime in 
seconds) 

AOS % slowdown SOA % slowdown 

CUDA 1.00 - 0.79 - 
Thrust 1.99 49% 1.38 43% 
RAJA Like 1.17 15% 0.79 0% 

(runtime in 
seconds) 

AOS % slowdown SOA %slowdown 

CUDA 0.27 - 0.23 - 
Thrust 0.91 70% 0.78 71% 
RAJA Like 0.32 16% 0.23 0% 
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§  Using	4	GPU	devices	(	2	full	K80s	)	
	
	
	

	

§  Thrust	SOA	method	scaling	on	mul;ple	devices	more	effec;vely	

§  Only	minor	performance	losses	using	RAJA	over	direct	CUDA	

Results	–	100	Million	Par0cle	Study	cont.	

AOS SOA 
CUDA 17.74 [s] 15.84 [s] 
Thrust 18.34 [s] 11.37 [s] 
RAJA Like 18.64 [s] 15.92 [s] 
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§  100	Million	Par;cle	Study	–	Done	on	CPU	
—  [ 	 			SOA 	 	AOS 	 	]	
—  Thrust: 			XXX.XX	 	XXX.XX	
—  RAJA	like: 			XXX.XX	 	XXX.XX	
—  Thrust	History: 	 	XXX.XX	 	 		
— OMP	History:				 	 	XXX.XX	

§  Comment	on	OMP	results	

§  Comment	on	Portability	of	event	versus	history	

[results	not	yet	determined]	

Results	–	CPU	Portability	


